F-22 Raptor Fighter Jet - US:

The Lockheed Martin F-22 Raptor is a fifth-generation, single-seat, twin-engine, all-weather stealth tactical fighter aircraft developed for the United States Air Force (USAF). The result of the USAF's Advanced Tactical Fighter program, the aircraft was designed primarily as an air superiority fighter, but also has ground attack, electronic warfare, and signal intelligence capabilities. The prime contractor, Lockheed Martin, built most of the F-22's airframe and weapons systems and did its final assembly, while Boeing provided the wings, aft fuselage, avionics integration, and training systems.

F-22 Raptor Fighter Jet

The aircraft was variously designated F-22 and F/A-22 before it formally entered service in December 2005 as the F-22A. After a protracted development and despite operational issues, the USAF considers the F-22 critical to its tactical air power, and says that the aircraft is unmatched by any known or projected fighter. The Raptor's combination of stealth, aerodynamic performance, and situational awareness gives the aircraft unprecedented air combat capabilities.

The high cost of the F-22 Raptor, a lack of clear air-to-air missions due to delays in Russian and Chinese fighter programs, a ban on exports, and development of the more versatile F-35 led to the end of F-22 production. A final procurement tally of 187 operational production aircraft was established in 2009, and the last F-22 was delivered to the USAF in 2012.

F-22 Raptor Fighter Jet

The F-22 Raptor is among only a few aircraft that can supercruise, or sustain supersonic flight without using fuel-inefficient afterburners; it can intercept targets which subsonic aircraft would lack the speed to pursue and an afterburner-dependent aircraft would lack the fuel to reach. The Raptor's high operating altitude is also a significant tactical advantage over prior fighters. The use of internal weapons bays permits the aircraft to maintain comparatively higher performance over most other combat-configured fighters due to a lack of aerodynamic drag from external stores. The F-22's structure contains a significant amount of high-strength materials to withstand stress and heat of sustained supersonic flight. Respectively, titanium alloys and composites comprise 39% and 24% of the aircraft's structural weight.

F-22 Raptor Fighter Jet

The F-22 Raptor is highly maneuverable at both supersonic and subsonic speeds. Computerized flight control system and full-authority digital engine control (FADEC) make the aircraft highly departure resistant and controllable. The Raptor's relaxed stability and powerful thrust-vectoring engines enable the aircraft to turn tightly and perform very high alpha (angle of attack) maneuvers such as the Herbst maneuver (J-turn) and Pugachev's Cobra. The aircraft is also capable of maintaining over 60° alpha while having some roll control.

The F-22 Raptor's aerodynamic performance, sensor fusion, and stealth work together for increased effectiveness. Altitude, speed, and advanced active and passive sensors allow the aircraft to spot targets at considerable ranges and increase weapons range; altitude and speed also complement stealth's ability to increase the aircraft's survivability against ground defenses such as surface-to-air missiles. More details